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Abstract
The Sockets Direct Protocol (SDP) is an industry standard toallow
existing TCP/IP applications to be executed on high-speed networks
such as In�niBand (IB). Like many other high-speed networks, IB
requires the receiver process to inform the network interface card
(NIC), before the data arrives, about buffers in which incoming data
has to be placed. To ensure that the receiver process is readyto re-
ceive data, the sender process typically performs �ow-control on the
data transmission. Existing designs of SDP �ow-control arenaive
and do not take advantage of several interesting features provided by
IB. Speci�cally, features such as RDMA are only used for perform-
ing zero-copy communication, although RDMA has more capabili-
ties such as sender-side buffer management (where a sender process
can manage SDP resources for the sender as well as the receiver).
Similarly, IB also provides hardware �ow-control capabilities that
have not been studied in previous literature. In this paper,we utilize
these capabilities to improve the SDP �ow-control over IB using two
designs:RDMA-based �ow-controlandNIC-assisted RDMA-based
�ow-control. We evaluate the designs using micro-benchmarks and
real applications. Our evaluations reveal that these designs can im-
prove the resource usage of SDP and consequently its performance
by an order-of-magnitude in some cases. Moreover we can achieve
10-20% improvement in performance for various applications.

1 Introduction
The Sockets Direct Protocol (SDP) [2] is an industry standard
to allow existing TCP/IP applications to be executed on high-
speed networks such as In�niBand (IB) [1] and iWARP [5]. It
is designed to transparently improve the performance of such
applications by utilizing the hardware features of these net-
works. There are several implementations of SDP/IB. The
�rst implementation [7] utilized IB send-receive operations
to transmit data using intermediate buffer copies while tak-
ing advantage of IB's hardware protocol stack. Later de-
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signs [14, 6] extended this to utilize remote direct memory ac-
cess (RDMA) to allow for zero-copy message transfers. Each
design has its pros and cons. The buffer copy mechanism
performs data copies during communication adding overhead
especially for large messages. Zero-copy approaches per-
form on-the-�y registration of buffers with the network inter-
face card (NIC) and synchronization between the sender and
receiver adding overhead especially for small and medium-
sized messages. Thus, to maximize performance, SDP stacks
utilize the buffer copy mechanism for small and medium mes-
sages (up to 32KB), and zero-copy mechanisms for large mes-
sages (greater than 32KB). In this paper, we deal only with the
buffer copy mechanism used for small and medium messages.

While the buffer copy design takes advantage of IB's hard-
ware protocol stack, it is naive in aspects such as �ow-control.
Like many other high-speed networks, IB requires the re-
ceiver process to inform the NIC, before data arrives, about
buffers in which incoming data has to be placed. To ensure
that the receiver NIC is ready to receive data, the sender pro-
cess performs �ow-control on data transmission. The existing
design of SDP �ow-control uses send-receive-based commu-
nication, with each process managing its local �ow-control
buffers. With the receiver managing its local buffers, how-
ever, the sender is not aware of the receiver's exact usage sta-
tus and layout. Thus, the �ow-control tends to be conservative
resulting in underutilization of buffers and performance loss.

RDMA, however, has more capabilities than just zero-copy
communication. For example, it offerssender-side buffer
management. Since RDMA is completely handled by the
sender process, it allows this process to have complete con-
trol of SDP resources, such as �ow-control buffers, on both
the sender and receiver side. Further, IB provides hardware
�ow-control capabilities that have not been addressed so far.

In this paper, we propose two novel designs to improve the
�ow-control and performance for small and medium mes-
sages in SDP. The �rst design,RDMA-based �ow-control,
uses RDMA to allow the sender to manage both the sender
and the receiver buffers. This design, as we will see in the
later sections, achieves better utilization of the SDP buffer
resources and consequently better performance. However,
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Figure 1:Credit-based Flow-control Mechanism

it assumes (from a performance standpoint) that the appli-
cation will perform frequent communication to ensure that
data is �ushed out regularly from these buffers. Not doing
so can result in performance penalty. The second design,
NIC-assisted RDMA-based �ow-control, utilizes IB's hard-
ware �ow-control to extendRDMA-based �ow-controlwith
asynchronous communication progress (i.e., data �ushing)
without sacri�cing performance.

We demonstrate the capabilities of these designs using micro-
benchmarks as well as real applications. Our results show that
these designs can achieve almost an order-of-magnitude im-
provement in the bandwidth achieved by medium sized mes-
sages. Moreover, we can achieve performance improvements
of about 10% in a virtual microscope application and close to
20% in an isosurface visual rendering application.

2 Existing Credit-based Flow-control
Several high-speed networks, including IB, require the re-
ceiver to prepost work queue entries (WQEs) informing the
NIC about buffers in which messages should be received be-
fore each message arrives. To ensure that receive WQEs are
posted before any data arrives, SDP performs �ow-control.
Currently, it uses a credit-based approach for achieving this.
This �ow-control is separate from IB's hardware �ow-control
and is a consequence of adopting existing designs of high-
performance sockets on other networks [16, 15, 8].

2.1 Overview of Credit-based Flow-control
In credit-based �ow-control (Figure 1), the sender is initially
given a number of credits, sayN . Each process allocatesN
SDP send andN SDP receive �ow-control buffers, each of
sizeS bytes. The receiver postsN receive WQEs to the NIC
pointing to the receive �ow-control buffers; that is, the next
N messages will go into these buffers. On asend() call,
each message smaller thanS bytes is copied into a send buffer
and transmitted to the corresponding receive buffer. Mes-
sages larger thanS bytes are segmented and transmitted in a
pipelined manner. On arecv() call, data is copied from the

receive buffer to the destination buffer, and an acknowledg-
ment (ACK) is sent to the sender informing it that the receive
buffer is free to be reused. The sender loses a credit for every
message sent and gains a credit for every ACK received.

Previous designs [7] also extend this design by delaying
ACKs. In other words, the receiver sends an ACK after half
the credits have been used instead of sending one after each
received message. This approach reduces the amount of com-
munication required and improves performance.

2.2 Limitations of Credit-based Flow-control
Credit-based �ow-control has two primary disadvantages:
buffer utilization and network utilization.

Buffer Utilization: In credit-based �ow control, each mes-
sage uses at least one credit irrespective of its size. Sup-
pose the sender wants to sendN 1B messages, and each SDP
�ow-control buffer is 8KB. Since the receiver has preposted
N WQEs pointing to its receive buffers, each message is re-
ceived in a separate buffer, effectively wasting 99.98% of the
space allotted; in other words, only 1B of each 8KB SDP
buffer is utilized. This wastage also re�ects on the number
of messages transmitted; excessive underutilization of buffer
space results in the senderbelievingthat it has used up the
receiver resources, in spite of having free space available.

Network Utilization: In credit-based �ow-control, on a
send() call, SDP copies the message into the send �ow-
control buffer, waits until it has enough credits, and transmits
the data to the receiver. Thus, when small and medium mes-
sages are transmitted, they are directly pushed to the network
resulting in underutilization of the network and consequently
performance loss. On the other hand, coalescing multiple
small messages can allow SDP to transmit larger messages
over the network and thus improve network utilization.

3 RDMA-based Flow-control
While credit-based �ow-control is simple and widely ac-
cepted, it has several limitations, especially for small and
medium messages. In this section, we describe RDMA-based
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Figure 2:RDMA-based Flow-control Mechanism

�ow-control, a new approach utilizing IB RDMA capability
to improve the resource usage and performance of SDP.

3.1 Overview of RDMA-based Flow-control
Figure 2 illustrates RDMA-based �ow-control, which differs
from credit-based �ow-control in two areas: improved buffer
utilization and improved network utilization.

Improving Buffer Utilization: RDMA-based �ow-control
uses RDMA write with immediate data operations to allow
the sender to manage where exactly data is buffered on the
sender as well as the receiver SDP �ow-control buffers. This
approach allows data to be better packed, thus utilizing the
buffers more ef�ciently. In credit-based �ow-control,N SDP
�ow-control buffers each of sizeS are allocated, whereN is
the number of credits. In RDMA-based �ow-control, on the
other hand, one large �ow-control buffer of size(N � S) is
allocated. When the �rst message (sizeP) has to be commu-
nicated, it is placed (using RDMA write with immediate data)
at the start of the receive buffer. When the second message of
sizeQ has to be communicated, since the sender knows the
exact usage of the receive buffer (the �rstP bytes are used),
this message is written starting at byte(P + 1) of the receiver
buffer. This approach allows the sender to completely uti-
lize the available space in the sender as well as receiver SDP
buffers. On arecv() call, once data is copied from the re-
ceiver SDP buffer to the destination buffer, the receiver sends
an acknowledgment to the sender informing it about the addi-
tional available space.

Improving Network Utilization: As long as space is avail-
able in the SDP receive buffer, RDMA-based �ow-control fol-
lows a similar approach as credit-based �ow-control; it sends
out data before returning from thesend() call. Once no
more space is available on the receiver side, however, mes-
sages are copied into SDP send buffers, and control is re-
turned to the application. This approach gives RDMA-based
�ow-control an opportunity to coalesce multiple small mes-
sages. When space is freed up in the SDP receive buffer, this
data is sent as one large message instead of multiple small

messages. This approach as two advantages. First, since as
long as space is available in the receive buffer, data is sentout
immediately, latency of small messages is not hurt. Second,
when a large number of small or medium messages are trans-
mitted, though the �rst few messages are sent immediately,
the remaining are coalesced and sent as large messages, thus
improving network utilization and performance.

In summary, RDMA-based �ow-control avoids buffer
wastage by using the RDMA's sender-side buffer manage-
ment and improves network utilization and communication
performance by coalescing messages.

3.2 Limitations of RDMA-based Flow-control

While RDMA-based �ow-control can achieve better resource
utilization and performance, it has one disadvantage: the lack
of communication progress in some cases. Consider an exam-
ple with an 64KB SDP �ow-control buffer where the sender
initiates 64 sends of 2KB each, total of 128KB. Of these, 32
messages (64KB) are directly transferred to the SDP buffer
on the receiver. Then, if the receiver is not actively receiving
data, the sender will run out of space in the receive buffer to
write more data. Thus, the remaining 32 messages (64KB) are
copied to the SDP send buffer, and control is returned to the
application. At this time, suppose the sender goes into a large
computation loop. The application on the receiver side, how-
ever, calls therecv() call, copies the 64KB it has already re-
ceived, frees the SDP receive buffer, and sends an ACK to the
sender informing it that the SDP receive buffer can be reused.
In this situation, though the sender has buffered data to be sent
and has been informed about available receiver buffer space,
it cannotseethis information until the application comes out
of the computation loop and calls a communication function.
Thus, communication progress is halted.

Note that credit-based �ow-control does not face this limita-
tion because for everysend() call, if the sender does not
have credits, it blocks until credits are received and poststhe
data to the network before returning control.
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Figure 3:NIC-assisted RDMA-based Flow-control Mechanism

4 NIC-assisted Flow-control
Both credit-based �ow-control and RDMA-based �ow-
control have disadvantages. Credit-based �ow-control suffers
from underutilization of SDP buffers and the network and re-
sults in low performance. While RDMA-based �ow-control
improves these aspects, it suffers from lack of communica-
tion progress when a large number of small messages have to
be transmitted. To deal with these issues, we proposeNIC-
assisted RDMA-based �ow-control. This mechanism extends
RDMA-based �ow-control by utilizing IB's hardware �ow-
control capabilities. In other words, it uses RDMA-based
�ow-control to coalesce messages as appropriate and improve
performance and at the same time uses the IB hardware �ow-
control to ensure asynchronous communication progress.

NIC-assisted �ow control comprises of two main sub-
schemes:virtual window scheme, which aims at utilizing IB's
hardware �ow-control while handling its shortcomings, and
asynchronous interrupt scheme, which enhances the virtual
window scheme to improve performance by coalescing data.

4.1 Virtual Window Scheme
IB's hardware �ow-control is not a byte-level �ow-control,
but rather a message-level �ow-control; it makes sure that the
sender NIC sends out only as many messages as the receiver
NIC is expecting. The onus of ensuring that the receiver has
appropriate buffer space for each message is on the upper lay-
ers such as SDP. To handle this situation, we utilize thevirtual
window (W)scheme. The primary idea of this scheme is to
ensure that each posted receive WQE has a guarantee on the
amount of buffer space available. For example, if the sender
wants to send a message of 8KB, the receiver has to post a
receive WQE only after 8KB of space is available.

In this scheme, the receiver posts a receive WQE only when
at least the necessary virtual window size space is available
in the SDP receive buffer. Thus, if the SDP buffer size isS
bytes, the receiver initially postsS=W receive WQEs, where

W is the virtual window size. The sender, likewise, makes
sure that message segments posted to the network are always
smaller than or equal toW bytes, by performing appropriate
segmentation. Thus, the �rstS=W messages can de�nitely
be accommodated in the SDP receive buffer. If the sender
has to send more messages thanS=W, it posts send WQEs
corresponding to the additional data. However, since all the
posted receive WQEs would be used up, IB hardware �ow-
control ensures that this data is not sent out by the sender NIC
until the receiver posts additional receive WQEs.

We note that although each receive WQE corresponds toW
bytes of available buffer space, this space can be anywhere
in the SDP receive buffer; that is, the mapping between the
WQE and the actual location of the corresponding buffer is
not performed by the receiver. The sender uses RDMA write
with immediate data operations to manage the actual buffer
location to which each receive WQE maps. This �exibility
allows the receiver to manage only the logical space allocated
to each WQE, instead of the actual SDP buffer. For example,
suppose the SDP buffer is 64KB and the virtual window is
8KB. The receiver initially posts 8 receive WQEs. The vir-
tual window allocated to each receive WQE would be bytes
(1 to 8K), (8K+1 to 16K), and so forth. Now, suppose the
�rst message is only 1KB. In this case, the virtual windows
corresponding to the remaining WQEs automatically shift by
7KB and would be bytes (1K+1 to 9K), (9K+1 to 17K), and
so forth. The �nal 7KB is retained as free space. Since the
sender is managing the actual SDP receive buffers, this shift-
ing of the virtual windows is transparent to the receiver pro-
cess. Later, if the second message that arrives is also 1KB, the
virtual windows for the remaining WQEs again automatically
shift and leave a total of 14KB of free space. Since this free
space is more than the virtual window size (8KB), SDP can
post an additional WQE, after which 6KB of free space will
be available. When the receiver applications calls arecv() ,
the data in the SDP receive buffer is copied to the destination
buffer, and more free space is created.

4



4.2 Asynchronous Interrupt Scheme
While the virtual window scheme provides capabilities to uti-
lize IB hardware �ow-control, it does not coalesce messages
to improve performance. The asynchronous interrupt scheme
is designed based on two primary goals: (i) coalesce mes-
sages to improve performance; (ii) utilize the virtual window
scheme with IB hardware interrupts to carry out asynchronous
communication progress without hurting performance.

Message Coalescing:In this scheme the SDP send buffer is
divided into two portions: NIC-handled buffer and software-
handled buffer (Figure 3). The NIC-handled buffer follows a
similar pattern as the virtual window scheme. That is, data is
copied into the SDP send buffer and a corresponding send
WQE is posted to the NIC. The NIC uses hardware �ow-
control to send the data only after the receiver posts a receive
WQE. After the NIC-handled buffer is full, data is copied into
the software-handled buffer. This data is not directly sentout
but is held, allowing it to be coalesced with later messages.

Asynchronous Communication Progress:During message
coalescing, data is copied into the software-handled SDP
buffer and control returned to the application. If more mes-
sages are communicated later, they can be coalesced together
with this data to form larger messages and thus improve per-
formance. If no other messages are communicated later, how-
ever, we need to asynchronously �ush this data out. To do
so, we request IB hardware interrupts for the messages in
the NIC-handled buffer. Thus, once the �rst message that is
queued in the NIC-handled buffer is transmitted, an interrupt
is generated that is appropriately handled to �ush out the data
in the software-handled buffer as well. Although hardware
interrupts are typically expensive, in this design the NIC can
continue to transmit other messages in the NIC-handled buffer
(using IB hardware �ow-control), thus parallelizing the inter-
rupt processing with communication. This design allows us to
handle the interrupt without facing any performance penalty.

5 Experimental Results
In this section, we compare the performance of RDMA-based
�ow-control and NIC-assisted RDMA-based �ow-control,
with that of credit-based �ow-control. We �rst describe the
experimental test-bed in Section 5.1. Next, we evaluate the
designs based on micro-benchmarks in Section 5.2 and then
on real applications in Section 5.3.

5.1 Experimental Test-bed
The experimental test-bed consists of a 16-node cluster with
dual 3.6 GHz Intel Xeon EM64T processors. Each node has a
2 MB L2 cache and 512 MB of 333 MHz DDR SDRAM. The
nodes are equipped with Mellanox MT25208 In�niHost III
DDR PCI-Express adapters and are connected to a Mellanox
MTS-2400, 24-port fully nonblocking DDR switch. The SDP
stack is an in-house implementation at the Ohio State Univer-
sity. This stack is similar to other SDP stacks such as that

available in the OpenFabrics distribution [4] except that it is
completely in user-space and is built over the VAPI verbs in-
terface provided by Mellanox Technologies.

For each experiment, ten or more runs/executions are con-
ducted, the highest and lowest values are dropped (to discard
anomalies), and the average of the remaining values is re-
ported. For micro-benchmark evaluations, the results of each
run are an average of 10,000 or more iterations.

5.2 Micro-benchmark Based Evaluation
In this section, we evaluate the �ow-control designs using var-
ious micro-benchmark tests.

5.2.1 Ping-pong Latency and Uni-directional Bandwidth

Ping-pong Latency:Figure 4(a) shows the ping-pong latency
of SDP with the three �ow-control designs. In this experi-
ment, the sender sends a message of sizeSto the receiver, on
receiving which the receiver sends back another message of
the same size to the sender. This is repeated several times and
the total time averaged over the number of iterations to give
the average round-trip time. The ping-pong latency reported
here is one-half of the round-trip time, that is, the time taken
for a message to be transferred from one node to another.

As shown in the �gure, all three schemes perform identically.
This result is expected as the three schemes differ only in
the way they handle �ow-control when there is either no re-
mote credit available (credit-based �ow-control) or no space
available in the remote SDP buffer (RDMA-based and NIC-
assisted �ow-control). In the ping-pong latency test, only
one message is communicated before the sender waits for a
response from the remote process. Thus, there is no �ow-
control issue in this test and all schemes behave identically.

Unidirectional Bandwidth: Figure 4(b) shows the unidirec-
tional bandwidth of the three �ow-control mechanisms. In
this experiment, the sender sends a single message of sizeS
a number of times to the receiver. On receiving all the mes-
sages, the receiver sends back one small message to the sender
indicating that it has received the messages. The sender cal-
culates the total time, subtracts the one way latency of the
message sent by the receiver, and based on the remaining time
calculates the amount of data it had transmitted per unit time.

As shown in the �gure, RDMA-based �ow-control achieves
the best performance, while credit-based �ow-control
achieves the worst, especially for small and medium-sized
messages. For messages in the 256B to 4KB range, we no-
tice almost an order of magnitude better performance. This
behavior is expected because RDMA-based �ow-control co-
alesces messages and thus utilizes the network more effec-
tively resulting in a signi�cantly better performance. In the
�gure, we also notice that the performance of NIC-assisted
RDMA-based �ow-control is very close to that of RDMA-
based �ow-control. This result shows that our scheme is able
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Figure 4:SDP micro-benchmark evaluation: (a) Ping-pong Latency and (b) Uni-directional Bandwidth

to effectively hide the cost of interrupt handling by overlap-
ping interrupt processing with data transfer time.

5.2.2 Communication Progress Benchmark

The communication progress test is similar to a ping-pong la-
tency test but with two changes. First, instead of one message
being sent in each direction, a burst of 100 messages is used.
Second, after each burst, an additional computation is added.
If the �ow-control scheme can achieve good communication
progress, it can send out data even when the application is
performing other computation. Thus, the receiver can receive
the data immediately, and the computation on both the sender
and the receiver is parallelized to some extent. However, if
the �ow-control scheme buffers data in its send buffer with-
out performing good communication progress, the transmis-
sion of data is delayed until the computation is completed;
that is, the receiver would be waiting to receive more data,
which is available in the sender's SDP buffer but has not been
transmitted. Only after the sender's computation is complete,
when it tries to receive data, is this data �ushed out. Thus, in
this case, the computation on the sender and receiver is com-
pletely serialized resulting in poor performance.

Communication Progress Capability
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Figure 5:Communication Progress Benchmark

In Figure 5, we report the performance of the three �ow-
control schemes for a message size of 4KB with varying

amounts of computation. In the �gure, we notice that when
there is no or minimal computation, RDMA-based �ow-
control and NIC-assisted RDMA-based �ow-control take the
least amount of time. Credit-based �ow-control, on the other
hand, takes the most time. As the amount of computa-
tion increases, however, we see that credit-based �ow-control
and NIC-assisted RDMA-based �ow-control scale well, while
RDMA-based �ow-control deteriorates rapidly. In fact, for
computation amounts greater than 1000� s, it is outperformed
even by credit-based �ow-control.

This test shows that credit-based �ow-control and NIC-
assisted �ow-control are able to achieve good communica-
tion progress even when the application performs interleav-
ing computation. For credit-based �ow-control, when no re-
mote credits are available, the scheme just blocks, waiting
for the credits. Thus, thesend() call does not return un-
til the data is actually sent out. Consequently, the commu-
nication progress is good. For NIC-assisted RDMA-based
�ow-control, although data is buffered in the SDP send buffer
without being immediately transmitted, the NIC interrupt en-
sures that the data is �ushed out even when the application
is busy with its computation. Thus, again the communication
progress is good. RDMA-based �ow-control, on the other
hand, is not able to achieve good communication progress be-
cause this scheme buffers data hoping to coalesce it with later
messages. Without communicating more messages, however,
when the application starts doing additional computation,the
buffered data has to wait without being �ushed out.

5.2.3 Buffer Utilization Test

The buffer utilization test demonstrates the amount of SDP
buffer space that is utilized by the different schemes. In this
benchmark, we pro�le the SDP library to periodically monitor
the amount of buffer space in which data is already copied
and is not free to be used. The average percentage usage of
the buffer space is measured and shown in Figures 6(a) (for
64KB SDP buffer size) and 6(b) (for 256KB SDP buffer size).
We note two important aspects in these �gures:
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Figure 6:Buffer Utilization with SDP buffer size of : (a) 8KB x 8 credits = 64KB and (b) 32KB x 8 credits = 256KB

1. The buffer utilization of the RDMA-based �ow-control
and NIC-assisted RDMA-based �ow-control is much
higher than that of credit-based �ow-control. This is
attributed to the sender-side buffer management capa-
bility of RDMA, which allows data messages to be
placed more compactly, thus allowing for improved
buffer usage. In credit-based �ow-control, when each
SDP buffer is 8KB (Figure 6(a)), the scheme is able to
reach 100% utilization only for message sizes of 8KB or
higher. When each SDP buffer is 32KB (Figure 6(b)),
the scheme achieves a maximum of 25% utilization.

2. Although the overall trend of these results is similar to
the bandwidth test (Figure 4(b)), we notice that the buffer
utilization peaks a lot more rapidly; that is, for a SDP
buffer size of 64KB, peak buffer utilization is achieved
at a message size of 512B itself. This indicates that the
sender is able to pack data into the send buffers and is
ready to transmit it, but the receiver is not able to receive
data as fast, resulting in more data being accumulated in
the SDP buffers and consequently a high utilization.

5.3 Application-based Evaluation
In this section, we evaluate the three �ow-control designs
based on two different applications, virtual microscope [12]
and iso-surface visual rendering [11], that have been devel-
oped using the data-cutter library [9].

Overview of the Data-cutter Library: Data-Cutter is a
component-based framework [10] developed by University
of Maryland. It provides a framework, called �lter-stream
programming, for developing data-intensive applications. In
this framework, the application processing structure is imple-
mented as a set of components, called�lters . Data exchange
between �lters is performed through astreamabstraction that
denotes a unidirectional data �ow from one �lter to another.
The overall processing structure of an application is realized
by a �lter group, which is a set of �lters connected through
logical streams. An application query is handled as aunit
of work (UOW) by the �lter group. The size of the UOW

also represents the granularity in which data segments are
distributed in the system and the granularity in which data
processing is pipelined. Several data-intensive applications
have been designed and developed by using the data-cutter
run-time framework such as the virtual microscope applica-
tion and the iso-surface visual rendering application.

Virtual Microscope:Virtual microscope [12] is a digitized mi-
croscopy application. The software support required to store,
retrieve, and process digitized slides to provide interactive re-
sponse times for the standard behavior of a physical micro-
scope is a challenging issue [3, 12]. The main dif�culty stems
from the handling of large volumes of image data, which can
range from a few hundreds of megabytes to several gigabytes.
At a basic level, the software system should emulate the use
of a physical microscope, including continuously moving the
stage and changing magni�cation. The processing of client
queries requires projecting high-resolution data onto a grid of
suitable resolution and appropriately composing pixels map-
ping onto a single grid point.

Iso-surface Visual Rendering:Iso-surface rendering [13] is
widely used technique in many areas, including environmen-
tal simulations, biomedical images, and oil reservoir simu-
lators, for extracting and simplifying visualization of large
datasets within a 3D volume. In this paper, we utilize a
component-based implementation of such rendering [11].

Evaluation of the Data-cutter Applications: Figure 7 shows
the performance of the virtual microscope and iso-surface vi-
sual rendering applications for the different �ow-controlde-
signs. Both applications have been executed with a UOW of
1KB. The complete dataset is about 1GB, which is hosted on
a RAM diskin order to avoid disk fetch overheads in the ex-
periment. The virtual microscope application used �ve �lters:
read data, decompress, clip, zoom, and view. For this ap-
plication, �ve instances of the �lter group (total 25 �lters)
were placed on 13 dual-processor nodes. The iso-surface
visual rendering application used four �lters:read dataset,
iso-surface extraction, shade and rasterize, andmerge/view.
For this application, six instances of the �lter group (total 24
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Figure 7:Application Evaluation with Data-cutter: (a) Virtual Microscope and (b) Iso-surface Visual Rendering

�lters) were placed on 12 dual-processor nodes. Each �lter
performs some computation and communicates the processed
data to the next �lter. Once the communication is initiated,the
�lter starts computation on the next UOW, thus attempting to
overlap communication with computation.

As shown in the �gure, credit-based �ow-control shows poor
performance for both applications with all dataset sizes com-
pared to RDMA-based and NIC-assisted RDMA-based �ow-
control. In these applications, since multiple UOWs are pro-
cessed and communicated to the next �lter, the coalescing ca-
pability of these designs allows them to utilize the network
more effectively and hence achieve better performance. Our
designs outperform credit-based �ow-control by around 10%
for the virtual microscope application and close to 20% for
the iso-surface visual rendering application.

We also notice no difference in the performance of RDMA-
based and NIC-assisted RDMA-based �ow-control. This re-
sult shows that the enhanced communication progress is not
very bene�cial since the applications themselves frequently
make communication calls to ensure such progress.

6 Conclusions
In this paper, we discussed the limitations of the exist-
ing credit-based �ow-control in the Sockets Direct Protocol
(SDP) over IB. We pointed out that SDP currently does not
take advantage of the various features provided by IB. For
example, RDMA is used only for zero-copy communication,
and its other capabilities such assender-side buffer manage-
mentare unutilized. Similarly, IB's hardware �ow-control has
not been harnessed so far. We proposed two new �ow-control
mechanisms, known as RDMA-based �ow-control and NIC-
assisted RDMA-based �ow-control, to handle these limita-
tions and improve the resource usage and performance of
SDP. We presented a detailed overview of the two designs
and evaluated them using micro-benchmarks as well as ap-
plications. Our results show that these schemes can achieve
nearly an order-of-magnitude improvement in the bandwidth
achieved by SDP and around 10-20% improvement in appli-

cation performance.

References
[1] In�niBand Trade Association. http://www.in�nibandta.com.

[2] SDP Speci�cation. http://www.rdmaconsortium.org/home.

[3] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo, R. Ferreira,
R. Miller, M. Silberman, J. Saltz, A. Sussman, and H. Tsang. Digital
Dynamic Telepathology - The Virtual Microscope. InAMIA, 1998.

[4] OpenFabrics Alliance. http://www.openib.org.

[5] S. Bailey and T. Talpey. Remote Direct Data Placement (RDDP), April
2005.

[6] P. Balaji, S. Bhagvat, H.-W. Jin, and D. K. Panda. Asynchronous Zero-
copy Communication for Synchronous Sockets in the Sockets Direct
Protocol (SDP) over In�niBand. InCAC, 2006.

[7] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu,
and D. K. Panda. Sockets Direct Protocol over In�niBand in Clusters:
Is it Bene�cial? InISPASS, 2004.

[8] P. Balaji, P. Shivam, P. Wyckoff, and D. K. Panda. High Performance
User Level Sockets over Gigabit Ethernet. InCluster, 2002.

[9] M. Beynon, T. Kurc, A. Sussman, and J. Saltz. Design of a Framework
for Data-Intensive Wide-Area Applications. InHCW, 2000.

[10] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and
J. Saltz. Distributed Processing of Very Large Datasets with DataCutter.
Parallel Computing, October 2001.

[11] M. D. Beynon, T. Kurc, U. Catalyurek, and J. Saltz. A Component-
based Implementation of Iso-surface Rendering for Visualizing Large
Datasets.Report CS-TR-4249 and UMIACS-TR-2001-34, University of
Maryland, Department of Computer Science and UMIACS, 2001.

[12] U. Catalyurek, M. D. Beynon, C. Chang, T. Kurc, A. Sussman, and
J. Saltz. The Virtual Microscope.IEEE Transactions on Information
Technology in Biomedicine, 2002.

[13] J. Gao and H. Shen. Parallel View Dependent Isosurface Extraction
using Multi-Pass Occlusion Culling. InACM/IEEE Symposium on Par-
allel and Large Data Visualization and Graphics, 2001.

[14] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Zero Copy Sock-
ets Direct Protocol over In�niBand - Preliminary Implementation and
Performance Analysis. InHotI, 2005.

[15] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Sockets Layer
Over Virtual Interface Architecture. InCluster, 2001.

[16] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Performance
Sockets and RPC over Virtual Interface (VI) Architecture. In CANPC,
1999.

8


